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areas in Fig. 1 represent the domains of optimal stabilization by forces with partial dis- 

sipation corresponding to Eqs. (4. 10)L(4. 12) and coincident with the domains of fulfill- 
ment of the sufficient conditions of stability with the exception of the straight line a =2 

for solution (4. lo), the straight line a = 0 for solution (4.11). and the straight line 
6 = -i for solution (4.12) on which the conditions of optimal stabilization are not 

fulfilled in the first approximation. However, consideration of the nonlinear terms in 

the equations of perturbed motion indicate that the conditions of optimal stabilization 
are also fulfilled on these straight lines. 
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The Bellman partial differential equation involved in the synthesis of a stochastically 
optimal control of the final state of a linear system is considered. Approximate formulas 
and estimates of the solution are derived on the basis of the solution of the Bellman equa- 
tion for the determinate variant of the problem. A numerical method of solution is pro- 
posed. The problem in the one-dimensional case is reduced to an integral equation of 
the first kind ; a finite formula for the solution is derived under certain additional assump- 
tions. 
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1. The initirl equrtion,. One of the problems investigated in fl] is that of 

synthesizing the bounded stochastically optimal control of the final state of a linear sys- 

tem described by the equations (*) 

a? = Q (t) ZJ + E (t) (0 < t < T, 84 (4 E u ON (1.1) 
Here t is the time; 5, u , E (t) are the coordinate, control, and random disturbance 

vectors of orders n, m , n, respectively ; Q (t) is the given matrix of coefficients, 

U (t) is the closed set of permissible values of the control vector, and 10, T] is the 

given time integral. Information on the present state of the system is provided by the 
vector y (t)= G (t) z (t) -I- h (t), where G (t) is a given matrix and h (t) is the 

vector of random errors involved in obtaining the information. It was assumed that the 

forces E and h were white noises and that they shared a normal distribution law with 
the vector 5 (0) . The object was to find the optimal control operator u (t) = u {y (z), 

U. (7); 0 < z < t} which minimizes the precision estimate S = Mm [a~ (T)] , i. e 
the mathematical expectation of the prescribed scalar function 61 ]s (T)] of the vector 
defining the rinal state of the system. 

As is shown in PI, the optimal control can be expressed in the form of a function 
u (t, z (t)), where z (t) =M ft(t)\y (a-), u (r); O<‘t< t] is the nominal mathe- 
matical expectation of the vector 5 (t) for a known realization of y (T), u (r) in the 
interval [O, t). The function u (t, z) must be determined together with the correspond- 

ing a posteriori estimateS (t, 2 (t)) = M (61 i5 (T)l \ y (T), u (z); 0 < 7 < t} 
from the nonlinear Bellman second-order partial differential equation 

- St = min, (SZ, Q (t) u) + 1/z SP (S,,R (t)) (0 Q t < a (1.2) 

with the following boundary condition at t = T : 

5 (T, z) =‘I’ (z) = so (z -I- x) ‘I (T, 5) dx (1.3) 

q(T,x) = [(2n)“~C(T)~]-“‘cxp’/,(-CC-‘(T)x, z) 

Here z is an n-dimensional vector ; S, is the partial derivative of the Bellman func- 
tion S (t, z) with respect to t ; 8, and S,, are the vector of the first partial derivatives 

and the matrix of the second partial derivatives of the function S (t, z) with respect 

to the components of the vector z ; (. , .) denotes the scalar multiplication of vectors, 
sp is the trace of the matrix, R (I) and C (T) are bounded nonnegative-definite square 

matrices ; IC (T) 1 is the determinant of the matrix C (T) ; q (T, 2) is the density 
of the normal distribution of the random vector with the correlation matrix C (T). Inte- 

gration in formula (1.3) is over the entire space of the vector integration variable 5 
(this statement will hold for all cases where the integration limits are not indicated. 

The matrices R (t) and C(T) are defined bv the formulas 

II (t) = B’ (T, t), B(T, t) = 

= M f(x (T) - z (t)) fx (T) - z (1))‘\ u (T) = 0, z > t] (1.4) 

l ) We note that the more general system 

rr’ = A (t)q + 01 (t) u + EI (1) 

is reducible to the form (1.1) by the substitution of variables z = L (T)L-l (1) ~i,where 
L (t) is the fundamental matrix of the homogeneous system. 
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C (T) = B (T, T) = M 1(x (T) - z fT)) (x (2’) - z V))‘] (cont.) 

where the dot denotes differentiation with respect to the time t and the prime denotes 

transposition. They can be expressed in terms of the system coefficients and the charac- 

teristics of the laws of distribution of the processes t (t) and h (t) and of the vector 

X (0). If 5 (0) - Mx (0) = E it) - Mk (t) s 0, then C (T) =R (t) z 0. In 
the absence of errors in receiving the information the matrix R (t) coincides with the 

intensity of the white noise E (1) in yZ], 

A theorem on the existence and uniqueness of the solution of equations of the (1.2). 

(1.3) type is proved in [33. In the present paper we shall be concerned with obtaining 
finite formulas for the approximate and exact solu~o~ of Cauchy problem (1.2), (1.3) 
suitable for practical use. We shall also consider in more detail the case where the set 

U (8) takes the form of the parallelepi~d 

1 ZP (t) 1 sg I”’ (t) (L=l,...,m) (1.5) 

bounding the components u(‘) (t) of the control vector, Minimization with respect to 

the parameter u in Eq. (1.2) in this case can be effected in explicit form. If the system 

is described by the scalar equation 

x’-uS_E (6 < s Q T) (1.6) 

and if the set U (t) is the segment jr4 (t) 1 < 2 {t) with the possible deletion of some 
interior intervals, then the Bellman equations become 

(where the symbol for the phase coordinate is different from that of (1.2). (1.3) : the 
alteration will prove useful below), 

We note that a system in which a = 1, m # 1 can be reduced to the form (1.6) by 

introducing the scalar controlling parameter a1 = Q (t) u - UO (t), where 2uo (t) = 
= max,Q (l) u + nlin, Q (t) u and where the new perturbation g, (r) = g (t) -/- uo (1). 

Here 21 (1) = max, Q (1) u - min, Q (0 u 

2, Solution of the Bsllmrn squrtfon for a ryrtem with complete 
~nfo;matioR, The case with complete ~formati~, where the initial conditions and 

perturbations of the system are given, can be considered as a special case of a system 

with incomplete information by setting the initial deviation x (Of - &Ix (0) and per- 

turbation E (r) identically equal to zero (*) . The matrices R (t) and C (t) in this case 

are equal to zero and Eqs. (l.l)-(1.3) become 

5. = Q (t)u (2.1) 

- .s; = minu (SC, Q (t) 4 (0 <t < T, u. E u w (2.2) 

*) A system such that E (i) = M, F, (1) # 0 is reducible to a system without perturbations 

by converting to the new coordinates 
T 

=1 = t + 
s 

E (r) dr 
t 
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S” (T, x) = 0 (5) (2.3) 
In order to distinguish the determinate variant of the problem from the stochastic one, 

we mark the a posteriori estimate in the determinate problem with a zero superscript; 
in other words,we denote it by the symbol so (t, z). Let us consider some important par- 

ticular cases where the a posteriory estimates” (t, z) can be found from the equations 

of motion (2.1). 

lo. Let the coordinate and control vectors be one-dimensional. The Bellman equations 

in this case can be written as 

- St” = - I (t) 1 S,” I, S”(T,z)=o(x) (2.4) 

Let us suppose that the function o (x) is piecewise-continuous, that it has a single 
minimum at some point 9, and that it is nondecreasing for z > 5’ and nonincreasing 
for 5 ,( x0 . The definition of the a posteriori estimate 

S” (t, 5) = m&o [x (T) \x (t) = xl (2.5) 

and Eqs. (2.1) imply that the function S” (t, 5) in this case is given by the equations 

S” (t; 5) = 0 [x - b(t, T) sgn (5 - x0)1 (I t -- 9 I a b (4 0 

(2.6) 

so (4 4 = o [x01 (1 z - 2’ I 6 b (1, TN, b(t, T) = Tl@)d% 
t 

Substituting function (2.6) into Eqs. (2.4). we can verify the fact that this function is 

the solution of Cauchy problem (2.4) in the ordinary sense [4] provided that o (5) is also 
continuously differentiable. 

2’. Let the function o (x) be defined by the equations 

o(x) = 1 (se09 0 (5) = 0 (I E D) (2.7) 

where D is a given closed domain in the n-dimensional vector space. This choice of the 

function o (z) optimizes the entry of the vector r (7’) into the given domain D. We 

define the domain D (t, T) as the domain of those values of the vector x at the instant 

t from which system (2.1) can be brought into the domain D at the instant T. The con- 

trol u (z, z), t < T < T is optimal if and only if this control ensures the transfer of 
the system at the instant T into the domain D for all z (t) E D (t, T). This implies 

that the a posteriori estimate corresponding to the optimal control is given by the equa- 

tions so (t, 5) = 1 (t e D (t, T)), S” (t, z) = 0 (z E D (t, T)) (2.8) 

Because it is discontinuous, function (2.8) cannot be the solution of Cauchy problem 
(2.2), (2.3) in the ordinary sense. In the one-dimensional case it can be regarded as the 
solution in the following generalized sense: the sequence of solutions (2.6) associated 

with the sequence wi (x), o2 (z), .., of differential uniminimal functions which con- 

verges to function (2.7). converges to function (2.8). (This statement probably continues 
to hold in the multidimensional case). In contrast to the usual definition of the general- 
ized solution [4], the above definition does not require that the convergence be uniform. 

The domain D (t, T) is defined by the inequality T” (t, x) < T - t, where 
T” (t,s) is the minimum time to bring the system into the domain D from the position 
x at the instant t. Construction of the domain D (t, T), which involves solution of the 
time-optimal operation problem p], is quite difficult in the multidimensional case. 
Let the set u (t) and the domain D be parallelepipeds defined by inequalities (1.5) and 
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1 5({) - up f < df’ (f=i,_..,n) (2.9) 

where a#), d,-$@ are given quantities. In this case it is a relatively simple matter to 
determine the rectangular domain 

1 #’ - i$I rg d”’ (t) (1=i,.,.,n) 

circumscribing the domain D (t, T). We denote the former by D* (t, T). The dimen- 

dions d@) (t) (i = i, . . . . n) are given by the formula 
mT 

The function defined by the equations 

s* (t, 5) = i (z e D* (t, T)), s* (4 4 = 0 (2 E D+ (t, T)) (2.11) 

serves as the lower estimate for a posteriori estimate (2.8). 

In the case of arbitrary L) and &r (t) they can always be contained in the paralelepi- 

peds D, and Vi (t); the corresponding domain Dr* (t, ?‘) can be determined from 

formulas (2.10). This domain contains the domain D* (t, T). The functionSr* (t, 5) 

defined by Eqs. (2.11). where the domain D* (t, T) is replaced by the domain D,* 

(t, T), is a lower estimate for the functions s* (t, 5) and ,$‘* {t, S) , 

sl* (t, s) <s* (2, 5) <so (t, 5) (2.12) 

3’. Let the function o (z) attain its minimum at some point 5’. In this case the a 

posterior1 estimate S” (t, 5) satisfies the condition 

S” (1, 2) = 0 (2”) (5 E D,o (t, T)) (2.13) 

Here D,, (t, 2’) is the domain of values of the coordinates z at the instant t from 

which the system can be brought to the point 3’ at i!se instant T . Equation (2.13) follows 

from the definition (2.5) of a posteriori estimate. 

3. Eatimrtea and approximate formulrr for the :olutIon of tha 
Bellman equatton for a rtochattic cyrtcm. In this section we consider 

several variants of the approximate solution of Cauchy problem (1.2), (1.31, each of 
which is a lower estimate of the exact solution. Let us consider the function defined by 

the formula 

P,(t,~)=jS,(t,r)P(t,T,s--)dj:=jS~(t,s+z)P(r,T,z)~~ (3.1) 

Here S, (t, z) is the solution of Ey, (2.2) under condition (1.3) ; P (t, T, 2 - 2) 
is the fundamental solution [5] of the equation 

- pt = ‘la SP G-M (~)) (3.2) 
corresponding to system (1.1) in the absence of control. The function P (6 T, 5) is 
given by the formulas [6] 

P (t, T, z) = (ZJC)-“‘“I K1 (1, T) I-‘/“exp (- l/s k’r”’ (t, T)s, z) (3.3) 

n.,(~,T~=TIi(d~~=n(T,L)--C(T) (3.4) 

It is equal to the density of the normal distribution of the vector Z (T) - z (t) under 

the assumption that u (t) =: 0 for t >/ t. This follows from Eq. (1.4) and from the 

uncorrelatedness of the vectors 5 (2’) - z (T) and 2 (T) - z (t). .The function 
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S, (t, 5) is the a posteriori estimate for optimal control of the system with complete 
information under the assumption that the optimizable final-state function is given by 

formula (1.3). By construction, the function F1 (t, 2 (1)) is equal to the a posteriori 

estimate for the case of optimal control of a system which receives at the instant t all 
the additional information y (T) (t < ‘t < T) in addition to the information r~ (z), 

u (T) (0 < -c < 1) available at that instant. With optimal control the additional infor- 
mation cannot decrease the control precision (increase the precision estimate), so that 

function F, (t, Z) is a lower estimate of the Bellman function, 

F, (t, 2) < S (6 z) (3.5) 

The difference F, (t, Z) - S (t, z) vanishes in the two following cases : 
1) if the matrix R (t) is equal to zero for all t (this corresponds to the absence 

of measurements or to the absence of perturbations and initial deviations); 
2) if the system is not controlled (i. e. if the set u (t) consists of the single point 

u = 0). 
The function F, (t, z) can therefore be considered as an approximate solution of 

Cauchy problem (1.2), (1.3), provided the matrix R (t) is small or the dimensions of 
the set U (t) are small. 

Let the set u (t) be a closed domain and let system (2.1) be controlled p] in the 

interval [T - 6, Tl for any arbitrarily small 6 > 0. The difference between the exact 
and approximate solutions then also tends to zero in the case of infinite expansion of the 

domain ’ tt) * F~ (1, T) 1, cuj=m = lim FL (t, z) = S (4 2) IrcL3_, (3.W 
r (U)--rDo 

Here r (U) is the radius of a sphere with its center at the point u = 0 which fits 

completely in the domain U (t) for all t from the interval [T - 6, Tl for some 6 >o. 
In fact, if the control is unbounded, it is optimal if and only if z (7’) = z”, where z” is 

the minimum point of the function Y (z) in Eq. (1.3). The a priori and a posteriori esti- 

mates S and S (t, z) then attain their minimum values, 

min, S 1, (Ujd>3=r ,EyliS (t, z) = Y (2’) (0 d t < T) (3.7) 

On the other hand, formulas (3.1). (3.3) and (2.13) with o (2) replaced by Y (2) as 
well as the fact that the domain DzO(f, T) expands without limit with expansion of U 

enable us readily to prove the equation 

Flk 4 I P (U)+I, = lim FI (t, z) = Y (z“) 
r UJ)- 

(0 <t < T) (3.8) 

Comparison of formulas (3.7) and (3.8) yields the required result. 
Let us consider the function Fs (t, z) defined by formulas (3.1).(3.3), where the func- 

tion S, (t, z) is replaced by S” (t, 5) (Eqs. (2.2),(2.3)) and the matrix K1 (t, T) 
by the matrix 

K,(f,T)=C(T)+TR(r)dr=B(T,t) (3.9) 

The function FB (t, Z) is a lower estimat: for Fl (t, z). 
In fact, let the system receive the information v l-=z(I‘)\u(~)=O(~>t) inthe 

sense of the criterion S = MU 1.~ (Z’)] at the instant t . The function defined by Eqs. 

(3.3), (3.9),(1.4) is equal to the normal distribution density of the vector 1, - z (I). This 
means that the function FZ (1, z (t)) is an a posteriori estimate for the given hypothetical 
system with optimal control. The function FZ (I, 2) is therefore a lower estimate for the 



436 E. M. Mosbkov 

functions F; fl, Z) and S (I, a). 
Exactly as in the case of the function F, (1, z) we can show that the difference 

s (r. s) - F2 (t. 2) tends to zero as the dimensions of the set U (1) or the dispersions of 
the random forces go to zero. 

In the case of (2.7) the functions 

F* (t, z) = s S* (t, 3) P (t, T, z - 5) &, F1* (t, z) = 

= S,*(t,z)P(t, T,z-z)dx s (3.10) 

are clearly lower estimates for Fz (t, z) . 
Here the unction ?’ ft, T, z) is specified in the same way as in the determ~ation 

of Fs (t, 2) (formulas (3.3),(3.9)). The functions 5’* (t, z) and S1* (6, 2) can be 
found from formula (2.11) ; they are lower estimates (‘2.12) for S” (t, a). This implies 
the validity of the chain of inequalities 

Fr* (t, $1 S F* (6 z) G 172 (t, z) < F, (k z) G S (k z) 

The estimates F1* (t, z), F* (t, z), F2 (t, z) are coarser than I;, (I, z) but are 

easier to compute. In particular, the function F1* (t, z) is given by finite formulas. 

4, Numerical aolutlon of the Bellmrrn equ8tfon. Let the function 
o (5) be given by Eqs. (2.7). In this case the a posteriori estimate S (t, Z (t)) is the 
conditional #robabi~~ that the point z (T) will lie outside the domain D under optimal 

control. This means that the function S (1, z) satisfies the inequalities 

Fr* (t, z) < S (& z) < 1 (4.1) 
Let us define the rectangular domain 62 (8, t) in the coordinates z by means of the 

formulas 
1 p - at’ I,( d’l’ (e, t ) (f=i,...,n) 

df’ (e, t) = 4” (1) + y(e) d[Ks (4 T)]$‘, (4.2) 

Here y (E) is the Inverse of the function 

(4.3) 

e is a given sufficiently small positive number, and dr@) (t) (i = 1, . . . , B) are the 

dimensions of the domain &* (t, T) defined by formulas (2.10) ; [K, (t, T)l# is 
the corresponding diagonal element of matrix (3.9). From Eqs. (2.11) and (3.10) we 
see that the function F1* (t, z) nowhere exceeds unity and that it differs from unity 
by an amount smaller than e outside Q (e, t) (the dimensions of the domain Q (e, t) 

were determined precisely from this condition). Together with inequalities (4.1) this 
impIies that the function S (t, z) for z & Q (E, t) also differs from unity by an amount 
smaller thap e. This fact enables us to propose the following numerical method for solv- 

ing Eqs. (1.2). (1.3). 
A sufficiently small number E is chosen and the solution is set equal to unity at the 

boundary of the domain Q (e, t). As a result the initial Cauchy problem (1.2), (1.3) 
is replaced by the first boundary value problem [5] for Eq. (1.2) under conditions (1.3) 

and 
(4.4) 
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Here I‘ (E, t) is the boundary of the domain $2 (E, t), Because the solution of Ep. 
(1.2) is ~ont~uously dependent on the boundary conditions f33 the error due to this sub- 

stitution is on the order of e. The domain !2 (e, t) in Eq. (4.4) can be replaced by the 
broader domain $2 (E, 0) (see formulas (4.2), (3.9), (2.10)). In this case the problem 
can be solved numerically using a difference scheme [8] with a node net independent 

of the number k of the layer th = T - kA, k = 0,1, . . ., N. The solving procedure 

is even simpler in case (1.5). 
The proposed method is clearly applicable in the Case of an arbitrary function o (x} 

provided it has a finite limit o (CBZ) as 1 I 1 --P CO. The given domain D (or the domain 

circumscribed about I.) *in the formulas defining the dimensions of the domain D (E, t) 
is replaced ln this case by the dimensions of the rectangular domain beyond whose limits 

the function o (.t) differs from the limiting value o (00) by an amount smaller than 

E. The boundary value of the function S (t, 5) in Eq. (4.4) is assumed to be equal to 

0 (DC). 

6. A finite formulr for the rolutfon of the Bellman equatfon 
in the ona-dfmen#ionrl CAE~. Let us consider Eqs. (1.7), (1.8) corresponding 
to one-dimensional system (1.6). We assume that the coefficients I (t) and R (t) are 
continuous in t and positive in the interval [O, T] 

i 0) > 0, R (t) > 0 (0 d t G T) (5.1) 

and that the function Y (s) is even, nondecreasing for z > 0, continuously differentiable 

and bounded, 
y (--x1 = Y (x), Y’ (5) 2 0 (t a 0) (5.2) 

The primes here and below denote derivatives with respect to 2. Fulfillment of the 

conditions of existence and uniqueness of the solution of Cauchy problem (1.7),(1,8) is 

guaranteed in this case [3]. Let us show that the solution is given by the equations 

s 0, x) = s (t, z) (z> 0) 

8 (tc 4 = s (4 -5) (2 GO) 

Here s ft, z) is the solution of the linear parabolic equation 

- St = - 1 (t) % t ‘I& G) .%A! (2 > 0, 0 <t < T) 

satfsfying the conditions 

8 (T, x) =y (I) (s>O) 

8, (t, z) Ix=-0 = 0 (0 < t < T) 

(5.3) 

(5.4f 

(5.5) 

(5.6) 

(This equation is obtainable from Eq. (1.7) by replacing 1 S’, 1 by s,.f 
Proof. Let S (r, z) be the solution of Eqs. (1.7), (1.8). Then the function S (t, -2) 

is also a solution. This can be verified simply by substituting this function into the indi- 
cated equations. Because of the uniqueness of the solution this implies that the function 

S (t, z) is even in z, i. e. that S (1, -2) = S (t, 5). The latter equation and the conti- 
nuous differentiablilty of S (t, 5) with respect to GZ (this requiremet occurs in the defi- 

nition of the solution 143) imply that S, (t, X) &_, = 0 for all t from the interval [0, T]. 
Bearing in mind the fact that S, (T, X) = I’ (2) is nonnegative for z > 0, we can assume 

that 9, (t, x) >, 0 for all t from the interval [0, T] and t >, 0. In this connection let 

us consider the boundary value problem for linear parabolic equation (5.4) under con- 
ditions (S. 5). (5.6). This boundary value problem has a unique solution [S]. Differenti- 
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sting Eqs. (5.4). (5.5). we conclude that the derivative sy (t, z) satisfies the same condi- 
tion (5.4) and the conditions 

sr (T, 2) = Y’ (2) > 0 (5 > O), % (tl 2) lx=0 = 0 

On the basis of the maximum principle for a linear parabolic equation [5] this implies 

that sX (t, z) > 0 for 5 > 0. Thus, sX (t, t) = ( sx (t, z) 1 for z > 0, so that the func- 
tion s (t, z) satisfies Eqs. (1.7). (1.8) for z > 0. The function defined by Eqs. (5.3) is the 

solution of Cauchy problem (1.7), (1. 8). since it satisfies condition (1.8) for all z and 

Eq. (1.7) for z # 0; the continuity of this function and its derivatives S,, S,,, Sf for 
all z and t means that it also satisfies Eq. (1.7) for z = 0. 

Initial problem (1.7), (1.8) thus reduces to the solution of the second boundary value 

problem [5] for linear equation (5.4) under conditions (5.5). (5.6). Let us show that tbis 
problem can in turn be reduced to the solution of some integral equation of the first kind. 

Let us continue the function s (Z’, z) in Eq. (5.5) to negative values of z in some 
way which preserves continuity, 

s(T,s)=Y(z) (z>O), s(T, 5)=Yi(-5) (z<O) (5.7) 
Here ‘lrt (5) is a temporarily unknown differentiable function which satisfies the con- 

dition 
yt (0) = tJr (0) (5.8) 

We seek the solution of the boundary value problem (5.4)-(5.6) in the form of the 

solution of Cauchy problem (5.4), (5.7) in the strip --00 < 5 < 00, 0 < t ( T 
using the familiar formula [5] 

+eo co 

s (t, 5) = 1 p(h TV X-Y) 0’. Y)~Y = i W(Y)P@, T, X-Y)+ 
-co 0 

+ Y,(Y)P(& T, x + ~11 dy (5.9) 
Here p (t, T, x - y) is the fundamental solution of Eq. (5.4) determined from 

the formulas 

PUP z, 5 - Y) = G5~t, (k &“w - [ 
z - b (t, 7) - y]’ 

ulit %) (5.10) 

t,(t, q=&)ds, b(t, z) =jd(s)ds 
t t 

(5.11) 

Formula (5.10) can be obtained as follows. We use the substitution of variables 

t, = t, (t, T) t,=t-b(t, T), s1 (fl, 2,) = s If (h), z (1,. q)l 

to reduce Eq. (5.4) to an ordinary heat conduction equation whose fundamental solution 
is given by the familiar formula 

p1 (fl - Tl, t1 - y1)_= [an (fl - rl)]-“* exp 
- lz1 - Yll? 

2 ftl _ r,) 

We note that the inverse transform t (I,), t (tl, rl) exists and is unique by virtue of 
our assumption of positive R (I) and 1 (t). Reconverting to our original variables, we obtain 
formula (5.10). 

Differentiating Eq. (5.9) with respect to z and applying condition (5.6). we obtain an 
eqztion of the first kind [9] in the derivative Y; (x) , 

- 26(f* T)=l dx = 0 
\ [Y’(z)exp(--$+x)-Y1’(4]exP -‘zz~tltt,~) 

(5.12) 

0 (0 < t < T) 
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As a result of Eq. (5.8) the function I, (2) is given by the formula 

‘J’r (2) = Y (0) + i Yr’ (Y) dy (2 >/ 9) 
0 

(5.13) 

In those cases where Eq. (5.12) has a sufficiently smooth solution, the solution of Cau- 

thy problem (1.7). (1.8) can be found from formulas (5.3). (5.9). (5.13). 
Integrating the left side of Eq. (5.12) by parts, we obtain an integral equation for deter- 

mining the function Ys (I) directly, 
03 

s 
K (2, t) ‘I?1 (i) d+ = f (t) fOGi<Tl 

0 

The kernel K (3, t) and the absolute term I (1) of the integral equation are given by 

1”. Let the ratio of coefficients of Bellman equation (1.7) be equal to a constant, 

10) - = a (t) = 
R(f) 

a = const (5.14) 

In this case the solution of integral equation (5.12) is given by the finite formula 

Yy1’ (z) = e-@=Jr Y ‘ (a$ (5.15) 

In fact, as we see from Eqs. (5.11). in case (5.14) we have b f& T) tr-’ tt* T, = a, 

so that Eq. (5.12) becomes an identity when we make substitution (5.15). Substituting 
expression (5.15) into formula (5.13), we obtain 

Yrr (5) = e-saxY (x) + 2a ie-‘VP (y) dg (5.16) 
0 

With allowance for the above equation formula (5.9) becomes 

s (4 3 = \ go 6 x; T, Y)@‘, y)dyt sP-3 Al) = Y(Y) (5.17) 

go & x; T, Y) = P (t, T, X-Y> + e-p (t, T, x + y) - 
r+?4--b@, T) 

I/h(f, 2’) > 1 
- Y2 (5.18) 

Here 6, (x) is probability integral (4.3). 

Formulas (5.17). (5.18) can be derived as follows. Substituting expression (5.16) for 
the function Url (5) into formula (S. 9), we obtain 

OD 

*(t, 3) = 
s 

[P (t. T. 2 - 9) + e-2*v P#. T, s+v)Iy(Hdy+ 
0 

+2afp(t. T, 

Y 

z+?d #J f -sa'Y(z) dzdg (5.i9) 
0 0 
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Making use of the identi.ty 

we obtain 

On substitution of limits the first term vanishes, as a result of which the formula (5.19) 

with allowance for notation (5.18) assumes the form (5.1’7). 

In some cases it is more convenient to determine the function Ba (t, 2; TP I/) from 
the formula 

which yields an expression identically rqual to (5.18). (5.20) 

Although formulas (5.X7),( 5.18) were obtained under assumption of continuous differ- 
entiability and boundedness of the function Y (z), they are also applicable if the func- 
tion v (Z) has discontinulties of the first kind, as well as if it is unbounded at infinity 
provided it does not increase more rapidly than the function 

where I! > 0, In fact, in these cases function (5, l?), (5.18) remains sufficiently smooth 
and satisfies (by construction) Eq, (5.4) and conditions (5.5), (5.6). The above formulas 

for the exact solution can be used to analyze the exactness of various approximate 
methods of solving the Bellman equation by comparing the approximate and exact solu- 

tions for u (t) = con&. 

2”. If a It) = 1 (t)/%(t) is a piecewise-constant function which assumes the 

values al, l .*, C&N in the intervals 10, &ii, (tit t,l, . . . , (TV_&!‘), then the solution 
$ f& 2) in each of the intervals [&_r, b&j can be obtained successively for k = N, 

N - 1, .**, 1 using formulas (5. l?), (5.18). where T and a are replaced by ta and e&. 

respectively. 
The solution in this case can be expressed in a form similar to (5.17) t 

by setting 
RN-k (4 =; T, Y) = s go @l =; $ O) gN_k_r (tk, 2; T, y) dl: 

0 
(5.22) 

The function s (t! z) defined by Eqs. (5.21), (5.22) and its derivatives with respect to 

x of up to the second order, ~cl~ively, are ~n~uo~ for all x and t from the interval 

ogtg- The derivative q (t, 5) for t I tk (k = 1, . ..) N) has discontinuities of the 
first kind f jumps). Formulas (5,3), (5.21), (5.22) must therefore be considered as the 

generalized solution [4] of Eqs. (1.7), (1.8). 
Example. let us suppose that there are no measurement errors, that the intensity 
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of the white noise & in Eq. (1.6) is constant and equal to R, that the control is one- 
dimensional, that the restriction I (t) is constant and equal to I, and that the function 

o (2) is defined by the equations 

o(z)=0 (Izlddo), o(z)=i (IXl>4) 

In this case ‘P (t) =o (t), R (t) = R, 1 (t) = 1 in Eqs. (1.7),(1.8). Thus,a (Q--I/R= 

= const and the solution is given by formulas (5.3). (5.17). (5.20). (5. lo), (5.11). As a 
result we obtain 

00 

s (t, 2) = 
s 

-ax 
go(t,cT,y)dy= ay [p(t,T,z-Y)---aaup(t,T,r+y)]dzdy= 

da 
s s 
d, co 

=a 
t+do--(T-t) 

)/R(T ) 1 -$ (X>O) (5.23) 

In accordance with Eqs. (2.6), approximate solution (3.1)-(3.3) in this case becomes 

d&l (T-t) 

F1(I, t)=F*(t, z)=i - 
s 

P(t, T, z-y)dy= 

-da-Kr--I 1 

=I--@ 
s+do+t (T-t) +-do-l(T-t) 

dR (T - t) +@ i fR(T-t) 
(5.24) 

Comparing exact solution (5.23) and approximate solution (5.24), we see that the 
approximate solution is in fact a lower estimate of the exact solution and that the differ- 

ence between them tends to zero for 1+ 0 or I+ oo,and also in the case R + 0 or 
R -P 00. 
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